Modification of Fibroins: Approaches to Get Optimise Scaffolds for Musculoskeletal Tissue Engineering
نویسندگان
چکیده
The components of musculoskeletal system that consists of bone, ligament tendons and muscles are most vulnerable to injury from sports and related activities. Replacing the injured tissues more specifically the bone is a challenge to tissue engineers. Aiming at regeneration of bone tissues, silk fibroin from Bombyx mori, a novel biocompatible natural polymer has been explored either alone or as organic/inorganic composites for optimal growth of bone cells or differentiation of stem cells to bone cells in vitro. In the process, raw silk fibroins need to be were degummed, usually by alkali treatment method, to ameliorate the cytotoxicity from sericin. Most recently, the nanofibers of silk from electrospinning has shown a promise for bone tissue engineering. To get nanofibers, the degummed silk is usually dissolved in compatible solutions i.e. CaCl2 in H2O or LiBr in C2H5OH at different concentrations followed by dialysis to remove toxic ions. The ion free silk solution can be Electrospun alone or can be blended with various biopolymers for the fabrication of nanofibre biodegradable composite. Other approaches like crosslinking an array of biopolymers with silk or freeze drying the silk fibroins are also in pipeline to develop a novel silk based scaffold for bone tissue engineering.
منابع مشابه
Principles and methods of dental nerve tissue regeneration : a review
Background and Aim Today, tissue engineering is considered a significant approach in modern medicine, which is why research in biomaterials has focused on the development of advanced scaffolding for regenerative medicine. Many natural and synthetic polymers with a variety of origins have been used to make these scaffolds or are recommended by researches. These compositions usually have the pr...
متن کاملStem cell-based tissue engineering with silk biomaterials.
Silks are naturally occurring polymers that have been used clinically as sutures for centuries. When naturally extruded from insects or worms, silk is composed of a filament core protein, termed fibroin, and a glue-like coating consisting of sericin proteins. In recent years, silk fibroin has been increasingly studied for new biomedical applications due to the biocompatibility, slow degradabili...
متن کاملEVALUATION OF ANTIBACTERIAL PROPERTIES OF POLYLACTIC ACID-POLYCAPROLACTONE-CONTAINING HYDROXYAPATITE AND ZINC OXIDE NANOPARTICLES IN HARD TISSUE ABSORBABLE SCAFFOLDS
Today, many people need to use bone grafts and implants because of damage to bone tissue. Due to the stimulation of the immune system after implantation, infection at the operation site is very common, which causes swelling and pain in the operation area. The use of zinc oxide nanoparticles reduces infection at the operation site and reduces the patient's need for antibiotics. In the present st...
متن کاملOperative Dentistry and Biomaterials for Tooth Regenration
Tissue-engineered biomaterials have existed approximately 40 years as simple biomimetic structures. Replacement of human tissue with new tissue can be accomplished by generating replacements outside of the body or in situ in the body. In each case, the key elements are described as the tissue engineering triad of scaffolds, cells, and signals. Scaffolds can be produced synthetically or derived ...
متن کاملBioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications.
AIM The development of novel silk/nano-sized calcium phosphate (silk/nano-CaP) scaffolds with highly dispersed CaP nanoparticles in the silk fibroin (SF) matrix for bone tissue engineering. MATERIALS & METHODS Nano-CaP was incorporated in a concentrated aqueous SF solution (16 wt.%) by using an in situ synthesis method. The silk/nano-CaP scaffolds were then prepared through a combination of s...
متن کامل